Direct Solution of Linear Systems of Size 109 Arising in Optimization with Interior Point Methods
نویسندگان
چکیده
Solution methods for very large scale optimization problems are addressed in this paper. Interior point methods are demonstrated to provide unequalled efficiency in this context. They need a small (and predictable) number of iterations to solve a problem. A single iteration of interior point method requires the solution of indefinite system of equations. This system is regularized to guarantee the existence of triangular decomposition. Hence the well-understood parallel computing techniques developed for positive definite matrices can be extended to this class of indefinite matrices. A parallel implementation of an interior point method is described in this paper. It uses object-oriented programming techniques and allows for exploiting different block-structures of matrices. Our implementation outperforms the industry-standard optimizer, shows very good parallel efficiency on massively parallel architecture and solves problems of unprecedented sizes reaching 10 variables.
منابع مشابه
ABS Solution of equations of second kind and application to the primal-dual interior point method for linear programming
Abstract We consider an application of the ABS procedure to the linear systems arising from the primal-dual interior point methods where Newton method is used to compute path to the solution. When approaching the solution the linear system, which has the form of normal equations of the second kind, becomes more and more ill conditioned. We show how the use of the Huang algorithm in the ABS cl...
متن کاملPreconditioning Indefinite Systems in Interior-Point Methods for quadratic optimization
A new class of preconditioners is proposed for the iterative solution of symmetric indefinite systems arising from interior-point methods. The use of logarithmic barriers in interior point methods causes unavoidable ill-conditioning of linear systems and, hence, iterative methods fail to provide sufficient accuracy unless appropriately preconditioned. Now we introduce two types of preconditione...
متن کاملAn infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step
An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...
متن کاملPreconditioning Indefinite Systems in Interior Point Methods for Optimization
Every Newton step in an interior-point method for optimization requires a solution of a symmetric indefinite system of linear equations. Most of today’s codes apply direct solution methods to perform this task. The use of logarithmic barriers in interior point methods causes unavoidable ill-conditioning of linear systems and, hence, iterative methods fail to provide sufficient accuracy unless a...
متن کاملOn the parallel solution of dense saddle-point linear systems arising in stochastic programming
We present a novel approach for solving dense saddle-point linear systems in a distributedmemory environment. This work is motivated by an application in stochastic optimization problems with recourse, but the proposed approach can be used for a large family of dense saddle-point systems, in particular those arising in convex programming. Although stochastic optimization problems have many impo...
متن کامل